Análisis DSE: multinivel

Autor/a

Equipo EDUMER

Univariados

Univariados generales (incluyendo solo el experimento 4).

Data Frame Summary

datos_viñetas

Dimensions: 2696 x 35
Duplicates: 0
No Variable Label Stats / Values Freqs (% of Valid) Graph Valid Missing
1 nota [numeric] ¿Cuál fue tu promedio final de notas el año pasado? Si no lo recuerdas exactamente, indica una nota aproximada. (entre 1.0 y 7.0)
Mean (sd) : 6 (0.6)
min ≤ med ≤ max:
3 ≤ 6 ≤ 7
IQR (CV) : 0.7 (0.1)
28 distinct values 2696 (100.0%) 0 (0.0%)
2 merecimiento_nota [numeric] ¿Te parece que este promedio fue más o menos de lo que merecías?
Mean (sd) : 2 (0.5)
min ≤ med ≤ max:
1 ≤ 2 ≤ 3
IQR (CV) : 0 (0.2)
1 : 356 ( 13.2% )
2 : 2104 ( 78.2% )
3 : 232 ( 8.6% )
2692 (99.9%) 4 (0.1%)
3 nota_justa [numeric] En caso que tu promedio no es lo que merecías ¿Qué promedio piensas que merecías? (entre 1.0 y 7.0)
Mean (sd) : 6 (0.9)
min ≤ med ≤ max:
1 ≤ 6 ≤ 7
IQR (CV) : 0.8 (0.1)
23 distinct values 588 (21.8%) 2108 (78.2%)
4 d2_o2 [numeric] Establecimiento eduacional
Mean (sd) : 5.2 (2.6)
min ≤ med ≤ max:
1 ≤ 6 ≤ 9
IQR (CV) : 4 (0.5)
1 : 360 ( 13.4% )
2 : 160 ( 5.9% )
3 : 388 ( 14.4% )
4 : 128 ( 4.7% )
5 : 228 ( 8.5% )
6 : 592 ( 22.0% )
7 : 272 ( 10.1% )
8 : 156 ( 5.8% )
9 : 412 ( 15.3% )
2696 (100.0%) 0 (0.0%)
5 p17_o2 [numeric] ¿Cuál es el último curso o nivel de estudios que completó tu madre?
Mean (sd) : 3.7 (1.1)
min ≤ med ≤ max:
1 ≤ 4 ≤ 6
IQR (CV) : 2 (0.3)
1 : 60 ( 3.1% )
2 : 124 ( 6.4% )
3 : 748 ( 38.9% )
4 : 404 ( 21.0% )
5 : 512 ( 26.6% )
6 : 76 ( 4.0% )
1924 (71.4%) 772 (28.6%)
6 p18_o2 [numeric] ¿Cuál es el último curso o nivel de estudios que completó tu padre?
Mean (sd) : 3.8 (1.1)
min ≤ med ≤ max:
1 ≤ 4 ≤ 6
IQR (CV) : 2 (0.3)
1 : 40 ( 2.4% )
2 : 116 ( 6.9% )
3 : 600 ( 35.5% )
4 : 356 ( 21.0% )
5 : 512 ( 30.3% )
6 : 68 ( 4.0% )
1692 (62.8%) 1004 (37.2%)
7 genero [factor]
1. Hombre
2. Mujer
1372 ( 52.6% )
1236 ( 47.4% )
2608 (96.7%) 88 (3.3%)
8 curso [factor]
1. Básica
2. Media
1308 ( 48.5% )
1388 ( 51.5% )
2696 (100.0%) 0 (0.0%)
9 libros_hogar [factor]
1. Menos de 25 libros
2. Más de 25 libros
2268 ( 84.2% )
424 ( 15.8% )
2692 (99.9%) 4 (0.1%)
10 merit_esfuerzo [numeric] En Chile, las personas son recompensadas por sus esfuerzos
Mean (sd) : 2.7 (0.8)
min ≤ med ≤ max:
1 ≤ 3 ≤ 4
IQR (CV) : 1 (0.3)
1 : 244 ( 9.1% )
2 : 792 ( 29.4% )
3 : 1244 ( 46.1% )
4 : 416 ( 15.4% )
2696 (100.0%) 0 (0.0%)
11 merit_talento [numeric] En Chile, las personas son recompensadas por su inteligencia y habilidad
Mean (sd) : 2.8 (0.8)
min ≤ med ≤ max:
1 ≤ 3 ≤ 4
IQR (CV) : 1 (0.3)
1 : 144 ( 5.4% )
2 : 664 ( 24.7% )
3 : 1400 ( 52.1% )
4 : 480 ( 17.9% )
2688 (99.7%) 8 (0.3%)
12 school_esfuerzo [numeric] En esta escuela, quienes se esfuerzan obtienen buenas notas
Mean (sd) : 3.1 (0.8)
min ≤ med ≤ max:
1 ≤ 3 ≤ 4
IQR (CV) : 1 (0.2)
1 : 116 ( 4.3% )
2 : 320 ( 11.9% )
3 : 1344 ( 49.9% )
4 : 912 ( 33.9% )
2692 (99.9%) 4 (0.1%)
13 school_talento [numeric] En esta escuela, quienes son inteligentes obtienen buenas notas
Mean (sd) : 3.2 (0.7)
min ≤ med ≤ max:
1 ≤ 3 ≤ 4
IQR (CV) : 1 (0.2)
1 : 64 ( 2.4% )
2 : 264 ( 9.8% )
3 : 1552 ( 57.6% )
4 : 816 ( 30.3% )
2696 (100.0%) 0 (0.0%)
14 school_merecimiento [numeric] En esta escuela, los/as estudiantes obtienen las notas que merecen
Mean (sd) : 2.9 (0.7)
min ≤ med ≤ max:
1 ≤ 3 ≤ 4
IQR (CV) : 0 (0.3)
1 : 104 ( 3.9% )
2 : 528 ( 19.6% )
3 : 1492 ( 55.5% )
4 : 564 ( 21.0% )
2688 (99.7%) 8 (0.3%)
15 exp_t2_a [numeric] [Texto 2] Estudiante A (nota = 3.7) Se esfuerza más que la mayoría. Décimas a regalar:
Mean (sd) : 3.4 (1)
min ≤ med ≤ max:
0 ≤ 3 ≤ 5
IQR (CV) : 1 (0.3)
0 : 72 ( 2.7% )
1 : 20 ( 0.7% )
2 : 124 ( 4.6% )
3 : 1428 ( 53.0% )
4 : 596 ( 22.1% )
5 : 456 ( 16.9% )
2696 (100.0%) 0 (0.0%)
16 exp_t2_b [numeric] [Texto 2] Estudiante B (nota = 3.7) Se esfuerza menos que la mayoría. Décimas a regalar:
Mean (sd) : 1.5 (0.9)
min ≤ med ≤ max:
0 ≤ 2 ≤ 5
IQR (CV) : 1 (0.6)
0 : 512 ( 19.0% )
1 : 596 ( 22.1% )
2 : 1428 ( 53.0% )
3 : 124 ( 4.6% )
4 : 20 ( 0.7% )
5 : 16 ( 0.6% )
2696 (100.0%) 0 (0.0%)
17 exp_t3_a [numeric] [Texto 3] Estudiante A (nota = 3.7) Se esfuerza más que la mayoría - Su casa es pequeña, no tiene un espacio cómodo para estudiar. Décimas a regalar:
Mean (sd) : 3.7 (1.1)
min ≤ med ≤ max:
0 ≤ 4 ≤ 5
IQR (CV) : 2 (0.3)
0 : 56 ( 2.1% )
1 : 4 ( 0.1% )
2 : 108 ( 4.0% )
3 : 1140 ( 42.3% )
4 : 616 ( 22.8% )
5 : 772 ( 28.6% )
2696 (100.0%) 0 (0.0%)
18 exp_t3_b [numeric] [Texto 3] Estudiante B (nota = 3.7) Se esfuerza menos que la mayoría - Su casa es grande, tiene un espacio cómodo para estudiar. Décimas a regalar:
Mean (sd) : 1.2 (1)
min ≤ med ≤ max:
0 ≤ 1 ≤ 5
IQR (CV) : 2 (0.8)
0 : 804 ( 29.8% )
1 : 616 ( 22.8% )
2 : 1140 ( 42.3% )
3 : 108 ( 4.0% )
4 : 4 ( 0.1% )
5 : 24 ( 0.9% )
2696 (100.0%) 0 (0.0%)
19 id_estudiante [numeric] Identificador único estudiante
Mean (sd) : 208376105 (1070076)
min ≤ med ≤ max:
207508736 ≤ 207885689 ≤ 211723557
IQR (CV) : 1521691 (0)
674 distinct values 2696 (100.0%) 0 (0.0%)
20 exp_t1_a [numeric] [Texto 1] Estudiante A (nota = 3.7). Décimas a regalar:
Mean (sd) : 2.7 (1)
min ≤ med ≤ max:
0 ≤ 3 ≤ 5
IQR (CV) : 1 (0.4)
0 : 172 ( 6.4% )
1 : 12 ( 0.4% )
2 : 712 ( 26.4% )
3 : 1600 ( 59.3% )
4 : 76 ( 2.8% )
5 : 124 ( 4.6% )
2696 (100.0%) 0 (0.0%)
21 exp_t1_b [numeric] [Texto 1] Estudiante B (nota = 3.7). Décimas a regalar:
Mean (sd) : 2.1 (0.9)
min ≤ med ≤ max:
0 ≤ 2 ≤ 5
IQR (CV) : 1 (0.4)
0 : 272 ( 10.1% )
1 : 76 ( 2.8% )
2 : 1600 ( 59.3% )
3 : 712 ( 26.4% )
4 : 12 ( 0.4% )
5 : 24 ( 0.9% )
2696 (100.0%) 0 (0.0%)
22 dependencia [factor]
1. Colegio Particular Subven
2. Colegio Municipal
2568 ( 95.3% )
128 ( 4.7% )
2696 (100.0%) 0 (0.0%)
23 dependencia_rec [numeric]
Min : 0
Mean : 0
Max : 1
0 : 2568 ( 95.3% )
1 : 128 ( 4.7% )
2696 (100.0%) 0 (0.0%)
24 educ_max [factor]
1. Enseñanza media o menos
2. Estudios superiores
732 ( 36.0% )
1300 ( 64.0% )
2032 (75.4%) 664 (24.6%)
25 educ_max_rec [numeric]
Min : 0
Mean : 0.6
Max : 1
0 : 732 ( 36.0% )
1 : 1300 ( 64.0% )
2032 (75.4%) 664 (24.6%)
26 libros_rec [numeric]
Min : 0
Mean : 0.2
Max : 1
0 : 2268 ( 84.2% )
1 : 424 ( 15.8% )
2692 (99.9%) 4 (0.1%)
27 genero_rec [numeric]
Min : 0
Mean : 0.5
Max : 1
0 : 1372 ( 52.6% )
1 : 1236 ( 47.4% )
2608 (96.7%) 88 (3.3%)
28 curso_rec [numeric]
Min : 0
Mean : 0.5
Max : 1
0 : 1308 ( 48.5% )
1 : 1388 ( 51.5% )
2696 (100.0%) 0 (0.0%)
29 justicia_nota [numeric]
Mean (sd) : 0.8 (0.4)
min ≤ med ≤ max:
-0.3 ≤ 1 ≤ 1.9
IQR (CV) : 0 (0.5)
79 distinct values 2692 (99.9%) 4 (0.1%)
30 variable [character]
1. exp_t4_a
2. exp_t4_b
3. exp_t4_c
4. exp_t4_d
674 ( 25.0% )
674 ( 25.0% )
674 ( 25.0% )
674 ( 25.0% )
2696 (100.0%) 0 (0.0%)
31 decimas_asignadas [numeric]
Mean (sd) : 2.5 (1.5)
min ≤ med ≤ max:
0 ≤ 3 ≤ 10
IQR (CV) : 1 (0.6)
0 : 304 ( 11.3% )
1 : 361 ( 13.4% )
2 : 654 ( 24.3% )
3 : 864 ( 32.0% )
4 : 308 ( 11.4% )
5 : 169 ( 6.3% )
6 : 5 ( 0.2% )
7 : 12 ( 0.4% )
8 : 1 ( 0.0% )
10 : 18 ( 0.7% )
2696 (100.0%) 0 (0.0%)
32 esfuerzo [character]
1. Se esfuerza más que la ma
2. Se esfuerza menos que la
1348 ( 50.0% )
1348 ( 50.0% )
2696 (100.0%) 0 (0.0%)
33 contexto_hogar [character]
1. Su casa es grande, tiene
2. Su casa es pequeña, no ti
1348 ( 50.0% )
1348 ( 50.0% )
2696 (100.0%) 0 (0.0%)
34 total_decimas [numeric]
Min : 0
Mean : 9.9
Max : 10
0 : 40 ( 1.5% )
10 : 2656 ( 98.5% )
2696 (100.0%) 0 (0.0%)
35 prop_decimas [numeric]
Mean (sd) : 0.2 (0.1)
min ≤ med ≤ max:
0 ≤ 0.3 ≤ 1
IQR (CV) : 0.1 (0.6)
10 distinct values 2656 (98.5%) 40 (1.5%)

Generated by summarytools 1.0.1 (R version 4.3.1)
2025-06-08

Parte 1

Se trabaja con un primer subset denominado datos_viñetas_1, el cual contiene solo las décimas asignadas del experimento 1.

Error : Can't find datos_vi

Data Frame Summary

Dimensions: 1348 x 1
Duplicates: 1342
No Variable Stats / Values Freqs (% of Valid) Graph Valid Missing
1 decimas_asignadas [numeric]
Mean (sd) : 2.4 (1)
min ≤ med ≤ max:
0 ≤ 2 ≤ 5
IQR (CV) : 1 (0.4)
0 : 111 ( 8.2% )
1 : 22 ( 1.6% )
2 : 578 ( 42.9% )
3 : 578 ( 42.9% )
4 : 22 ( 1.6% )
5 : 37 ( 2.7% )
1348 (100.0%) 0 (0.0%)

Generated by summarytools 1.0.1 (R version 4.3.1)
2025-06-08

Correlaciones

  genero curso merit_esfuerzo merit_talento school_esfuerzo school_talento school_merecimiento decimas_asignadas justicia_nota nota
genero                    
curso -0.003                  
merit_esfuerzo 0.007 -0.208                
merit_talento -0.046 -0.133 0.501              
school_esfuerzo -0.042 -0.039 0.238 0.109            
school_talento -0.142 0.049 0.096 0.107 0.216          
school_merecimiento -0.092 -0.039 0.086 0.183 0.283 0.196        
decimas_asignadas -0.022 0.013 -0.018 0.024 0.033 0.037 0.007      
justicia_nota 0.025 -0.049 0.097 0.124 0.131 0.037 0.103 0.003    
nota 0.053 -0.041 0.045 0.090 0.141 0.018 0.019 0.043 0.105  
Computed correlation used pearson-method with listwise-deletion.

Modelos simples

Statistical models
  Model 1 Model 2 Model 3 Model 4 Model 5
(Intercept) 2.39*** 2.35*** 2.38*** 2.36*** 2.23***
  (0.04) (0.04) (0.03) (0.09) (0.10)
generoMujer -0.04        
  (0.05)        
cursoMedia   0.02      
    (0.05)      
libros_hogarMás de 25 libros     -0.07    
      (0.07)    
merit_esfuerzo       0.00  
        (0.03)  
merit_talento         0.05
          (0.03)
AIC 3631.92 3781.03 3764.37 3782.15 3760.66
BIC 3652.61 3801.85 3785.19 3802.98 3781.47
Log Likelihood -1811.96 -1886.51 -1878.18 -1887.08 -1876.33
Num. obs. 1304 1348 1346 1348 1344
Num. groups: id_estudiante 652 674 673 674 672
Var: id_estudiante (Intercept) 0.00 0.00 0.00 0.00 0.00
Var: Residual 0.94 0.96 0.95 0.96 0.95
***p < 0.001; **p < 0.01; *p < 0.05
Statistical models
  Model 1 Model 2 Model 3 Model 4 Model 5
(Intercept) 2.24*** 2.17*** 2.31*** 1.87*** 2.38***
  (0.11) (0.13) (0.11) (0.27) (0.06)
school_esfuerzo 0.04        
  (0.03)        
school_talento   0.06      
    (0.04)      
school_merecimiento     0.02    
      (0.04)    
nota       0.08  
        (0.04)  
justicia_nota         -0.01
          (0.06)
AIC 3765.21 3779.23 3762.21 3778.06 3765.44
BIC 3786.03 3800.05 3783.02 3798.89 3786.26
Log Likelihood -1878.61 -1885.61 -1877.10 -1885.03 -1878.72
Num. obs. 1346 1348 1344 1348 1346
Num. groups: id_estudiante 673 674 672 674 673
Var: id_estudiante (Intercept) 0.00 0.00 0.00 0.00 0.00
Var: Residual 0.95 0.95 0.95 0.95 0.95
***p < 0.001; **p < 0.01; *p < 0.05

ICC

Linear mixed model fit by REML ['lmerMod']
Formula: decimas_asignadas ~ 1 + (1 | id_estudiante)
   Data: datos_viñetas_1

REML criterion at convergence: 3769.1

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.4166 -0.3710 -0.3710  0.6518  2.6974 

Random effects:
 Groups        Name        Variance Std.Dev.
 id_estudiante (Intercept) 0.0000   0.0000  
 Residual                  0.9559   0.9777  
Number of obs: 1348, groups:  id_estudiante, 674

Fixed effects:
            Estimate Std. Error t value
(Intercept)  2.36276    0.02663   88.73
optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see help('isSingular')
[1] 0

Modelos multinivel

boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
Statistical models
  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
(Intercept) 2.66*** 2.67*** 2.45*** 2.11*** 2.45*** 2.11***
  (0.04) (0.05) (0.19) (0.30) (0.19) (0.30)
descripcion_viñetaEstudiante B -0.59*** -0.58*** -0.59*** -0.59*** -0.59*** -0.59***
  (0.05) (0.05) (0.05) (0.05) (0.05) (0.05)
generoMujer   -0.04 -0.03 -0.03 -0.03 -0.03
    (0.05) (0.05) (0.05) (0.05) (0.05)
cursoMedia   0.02 0.02 0.02 0.02 0.02
    (0.05) (0.05) (0.05) (0.05) (0.05)
libros_hogarMás de 25 libros   -0.00 -0.01 -0.02 -0.01 -0.02
    (0.07) (0.07) (0.07) (0.07) (0.07)
merit_esfuerzo     -0.06 -0.05 -0.06 -0.05
      (0.04) (0.04) (0.04) (0.04)
merit_talento     0.05 0.05 0.06 0.05
      (0.04) (0.04) (0.04) (0.04)
school_esfuerzo     0.05 0.04 0.05 0.04
      (0.04) (0.04) (0.04) (0.04)
school_talento     0.04 0.04 0.04 0.04
      (0.04) (0.04) (0.04) (0.04)
school_merecimiento     -0.02 -0.02 -0.02 -0.02
      (0.04) (0.04) (0.04) (0.04)
nota       0.06   0.06
        (0.04)   (0.04)
justicia_nota         -0.00 -0.01
          (0.06) (0.06)
AIC 3654.33 3524.93 3527.91 3532.28 3533.67 3538.01
BIC 3675.16 3561.14 3589.94 3599.47 3600.86 3610.37
Log Likelihood -1823.17 -1755.47 -1751.96 -1753.14 -1753.83 -1755.00
Num. obs. 1348 1304 1298 1298 1298 1298
Num. groups: id_estudiante 674 652 649 649 649 649
Var: id_estudiante (Intercept) 0.00 0.00 0.00 0.00 0.00 0.00
Var: Residual 0.87 0.85 0.85 0.85 0.85 0.85
***p < 0.001; **p < 0.01; *p < 0.05

Parte 2

Se trabaja con un primer subset denominado datos_viñetas_2, el cual contiene solo las décimas asignadas del experimento 2.

Error : Can't find datos_vi

Data Frame Summary

Dimensions: 1348 x 1
Duplicates: 1342
No Variable Stats / Values Freqs (% of Valid) Graph Valid Missing
1 decimas_asignadas [numeric]
Mean (sd) : 2.4 (1.4)
min ≤ med ≤ max:
0 ≤ 2 ≤ 5
IQR (CV) : 1 (0.6)
0 : 146 ( 10.8% )
1 : 154 ( 11.4% )
2 : 388 ( 28.8% )
3 : 388 ( 28.8% )
4 : 154 ( 11.4% )
5 : 118 ( 8.8% )
1348 (100.0%) 0 (0.0%)

Generated by summarytools 1.0.1 (R version 4.3.1)
2025-06-08

Correlaciones

  genero curso merit_esfuerzo merit_talento school_esfuerzo school_talento school_merecimiento decimas_asignadas justicia_nota nota
genero                    
curso -0.003                  
merit_esfuerzo 0.007 -0.208                
merit_talento -0.046 -0.133 0.501              
school_esfuerzo -0.042 -0.039 0.238 0.109            
school_talento -0.142 0.049 0.096 0.107 0.216          
school_merecimiento -0.092 -0.039 0.086 0.183 0.283 0.196        
decimas_asignadas 0.004 0.001 -0.010 -0.006 0.009 0.019 0.009      
justicia_nota 0.025 -0.049 0.097 0.124 0.131 0.037 0.103 0.001    
nota 0.053 -0.041 0.045 0.090 0.141 0.018 0.019 0.023 0.105  
Computed correlation used pearson-method with listwise-deletion.

Modelos simples

Statistical models
  Model 1 Model 2 Model 3 Model 4 Model 5
(Intercept) 2.45*** 2.45*** 2.46*** 2.44*** 2.44***
  (0.05) (0.05) (0.04) (0.12) (0.14)
generoMujer 0.02        
  (0.08)        
cursoMedia   -0.01      
    (0.07)      
libros_hogarMás de 25 libros     -0.05    
      (0.10)    
merit_esfuerzo       0.00  
        (0.04)  
merit_talento         0.00
          (0.05)
AIC 4550.39 4692.01 4685.95 4693.07 4676.38
BIC 4571.08 4712.83 4706.77 4713.90 4697.19
Log Likelihood -2271.20 -2342.00 -2338.97 -2342.54 -2334.19
Num. obs. 1304 1348 1346 1348 1344
Num. groups: id_estudiante 652 674 673 674 672
Var: id_estudiante (Intercept) 0.00 0.00 0.00 0.00 0.00
Var: Residual 1.90 1.88 1.88 1.88 1.88
***p < 0.001; **p < 0.01; *p < 0.05
Statistical models
  Model 1 Model 2 Model 3 Model 4 Model 5
(Intercept) 2.39*** 2.29*** 2.37*** 2.10*** 2.46***
  (0.15) (0.18) (0.15) (0.37) (0.08)
school_esfuerzo 0.02        
  (0.05)        
school_talento   0.05      
    (0.05)      
school_merecimiento     0.03    
      (0.05)    
nota       0.06  
        (0.06)  
justicia_nota         -0.01
          (0.09)
AIC 4687.58 4691.86 4679.99 4691.54 4686.48
BIC 4708.40 4712.69 4700.80 4712.37 4707.30
Log Likelihood -2339.79 -2341.93 -2335.99 -2341.77 -2339.24
Num. obs. 1346 1348 1344 1348 1346
Num. groups: id_estudiante 673 674 672 674 673
Var: id_estudiante (Intercept) 0.00 0.00 0.00 0.00 0.00
Var: Residual 1.88 1.88 1.88 1.88 1.88
***p < 0.001; **p < 0.01; *p < 0.05

ICC

Linear mixed model fit by REML ['lmerMod']
Formula: decimas_asignadas ~ 1 + (1 | id_estudiante)
   Data: datos_viñetas_2

REML criterion at convergence: 4680.7

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-1.7851 -0.3267 -0.3267  0.4025  1.8608 

Random effects:
 Groups        Name        Variance Std.Dev.
 id_estudiante (Intercept) 0.000    0.000   
 Residual                  1.881    1.371   
Number of obs: 1348, groups:  id_estudiante, 674

Fixed effects:
            Estimate Std. Error t value
(Intercept)  2.44807    0.03735   65.54
optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see help('isSingular')
[1] 0

Modelos multinivel

boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
Statistical models
  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
(Intercept) 3.42*** 3.44*** 3.33*** 3.04*** 3.33*** 3.04***
  (0.04) (0.05) (0.19) (0.32) (0.19) (0.32)
descripcion_viñetaSe esfuerza menos que la mayoría -1.94*** -1.98*** -1.98*** -1.98*** -1.98*** -1.98***
  (0.05) (0.05) (0.05) (0.05) (0.05) (0.05)
generoMujer   0.02 0.02 0.02 0.02 0.02
    (0.05) (0.05) (0.05) (0.05) (0.05)
cursoMedia   -0.00 -0.01 -0.00 -0.01 -0.00
    (0.05) (0.05) (0.05) (0.05) (0.05)
libros_hogarMás de 25 libros   0.02 0.01 0.00 0.01 0.00
    (0.07) (0.07) (0.08) (0.07) (0.08)
merit_esfuerzo     -0.02 -0.02 -0.02 -0.02
      (0.04) (0.04) (0.04) (0.04)
merit_talento     -0.01 -0.01 -0.01 -0.01
      (0.04) (0.04) (0.04) (0.04)
school_esfuerzo     0.01 0.00 0.01 0.01
      (0.04) (0.04) (0.04) (0.04)
school_talento     0.04 0.04 0.04 0.04
      (0.04) (0.04) (0.04) (0.04)
school_merecimiento     0.01 0.01 0.01 0.01
      (0.04) (0.04) (0.04) (0.04)
nota       0.05   0.05
        (0.05)   (0.05)
justicia_nota         0.00 -0.00
          (0.06) (0.06)
AIC 3756.39 3624.17 3625.04 3630.05 3630.72 3635.72
BIC 3777.22 3660.38 3687.06 3697.25 3697.91 3708.08
Log Likelihood -1874.20 -1805.08 -1800.52 -1802.03 -1802.36 -1803.86
Num. obs. 1348 1304 1298 1298 1298 1298
Num. groups: id_estudiante 674 652 649 649 649 649
Var: id_estudiante (Intercept) 0.00 0.00 0.00 0.00 0.00 0.00
Var: Residual 0.94 0.92 0.91 0.91 0.91 0.91
***p < 0.001; **p < 0.01; *p < 0.05

Parte 3

Se trabaja con un primer subset denominado datos_viñetas_3, el cual contiene solo las décimas asignadas del experimento 3.

Error : Can't find datos_vi

Data Frame Summary

Dimensions: 1348 x 1
Duplicates: 1342
No Variable Stats / Values Freqs (% of Valid) Graph Valid Missing
1 decimas_asignadas [numeric]
Mean (sd) : 2.5 (1.6)
min ≤ med ≤ max:
0 ≤ 2 ≤ 5
IQR (CV) : 3 (0.6)
0 : 215 ( 15.9% )
1 : 155 ( 11.5% )
2 : 312 ( 23.1% )
3 : 312 ( 23.1% )
4 : 155 ( 11.5% )
5 : 199 ( 14.8% )
1348 (100.0%) 0 (0.0%)

Generated by summarytools 1.0.1 (R version 4.3.1)
2025-06-08

Correlaciones

  genero curso merit_esfuerzo merit_talento school_esfuerzo school_talento school_merecimiento decimas_asignadas justicia_nota nota
genero                    
curso -0.003                  
merit_esfuerzo 0.007 -0.208                
merit_talento -0.046 -0.133 0.501              
school_esfuerzo -0.042 -0.039 0.238 0.109            
school_talento -0.142 0.049 0.096 0.107 0.216          
school_merecimiento -0.092 -0.039 0.086 0.183 0.283 0.196        
decimas_asignadas 0.011 0.003 -0.000 -0.013 0.003 0.015 -0.001      
justicia_nota 0.025 -0.049 0.097 0.124 0.131 0.037 0.103 -0.002    
nota 0.053 -0.041 0.045 0.090 0.141 0.018 0.019 0.007 0.105  
Computed correlation used pearson-method with listwise-deletion.

Modelos simples

Statistical models
  Model 1 Model 2 Model 3 Model 4 Model 5
(Intercept) 2.46*** 2.47*** 2.47*** 2.46*** 2.55***
  (0.06) (0.06) (0.05) (0.15) (0.16)
generoMujer 0.04        
  (0.09)        
cursoMedia   0.00      
    (0.09)      
libros_hogarMás de 25 libros     -0.02    
      (0.12)    
merit_esfuerzo       0.00  
        (0.05)  
merit_talento         -0.03
          (0.06)
AIC 4934.88 5103.73 5095.75 5104.77 5092.88
BIC 4955.57 5124.56 5116.57 5125.60 5113.70
Log Likelihood -2463.44 -2547.87 -2543.88 -2548.39 -2542.44
Num. obs. 1304 1348 1346 1348 1344
Num. groups: id_estudiante 652 674 673 674 672
Var: id_estudiante (Intercept) 0.00 0.00 0.00 0.00 0.00
Var: Residual 2.55 2.56 2.56 2.56 2.56
***p < 0.001; **p < 0.01; *p < 0.05
Statistical models
  Model 1 Model 2 Model 3 Model 4 Model 5
(Intercept) 2.45*** 2.31*** 2.44*** 2.31*** 2.48***
  (0.18) (0.20) (0.18) (0.44) (0.09)
school_esfuerzo 0.01        
  (0.06)        
school_talento   0.05      
    (0.06)      
school_merecimiento     0.01    
      (0.06)    
nota       0.03  
        (0.07)  
justicia_nota         -0.01
          (0.10)
AIC 5097.30 5103.76 5086.74 5103.95 5096.09
BIC 5118.12 5124.59 5107.55 5124.78 5116.91
Log Likelihood -2544.65 -2547.88 -2539.37 -2547.98 -2544.05
Num. obs. 1346 1348 1344 1348 1346
Num. groups: id_estudiante 673 674 672 674 673
Var: id_estudiante (Intercept) 0.00 0.00 0.00 0.00 0.00
Var: Residual 2.56 2.55 2.55 2.56 2.56
***p < 0.001; **p < 0.01; *p < 0.05

ICC

Modelos multinivel

fixed-effect model matrix is rank deficient so dropping 1 column / coefficient
boundary (singular) fit: see help('isSingular')
fixed-effect model matrix is rank deficient so dropping 1 column / coefficient
boundary (singular) fit: see help('isSingular')
fixed-effect model matrix is rank deficient so dropping 1 column / coefficient
boundary (singular) fit: see help('isSingular')
fixed-effect model matrix is rank deficient so dropping 1 column / coefficient
boundary (singular) fit: see help('isSingular')
fixed-effect model matrix is rank deficient so dropping 1 column / coefficient
boundary (singular) fit: see help('isSingular')
fixed-effect model matrix is rank deficient so dropping 1 column / coefficient
boundary (singular) fit: see help('isSingular')
Statistical models
  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
(Intercept) 1.24*** 1.23*** 1.16*** 1.06** 1.17*** 1.06**
  (0.04) (0.06) (0.21) (0.34) (0.21) (0.34)
esfuerzoSe esfuerza más que la mayoría 2.45*** 2.45*** 2.45*** 2.45*** 2.45*** 2.45***
  (0.06) (0.06) (0.06) (0.06) (0.06) (0.06)
generoMujer   0.04 0.04 0.04 0.04 0.04
    (0.06) (0.06) (0.06) (0.06) (0.06)
cursoMedia   0.01 0.00 0.01 0.00 0.01
    (0.06) (0.06) (0.06) (0.06) (0.06)
libros_hogarMás de 25 libros   -0.00 -0.00 -0.01 -0.00 -0.01
    (0.08) (0.08) (0.08) (0.08) (0.08)
merit_esfuerzo     0.01 0.01 0.01 0.01
      (0.04) (0.04) (0.04) (0.04)
merit_talento     -0.04 -0.04 -0.03 -0.04
      (0.04) (0.04) (0.04) (0.04)
school_esfuerzo     0.00 -0.00 0.00 -0.00
      (0.04) (0.04) (0.04) (0.04)
school_talento     0.04 0.04 0.04 0.04
      (0.04) (0.04) (0.04) (0.04)
school_merecimiento     -0.00 -0.00 -0.00 -0.00
      (0.04) (0.04) (0.04) (0.04)
nota       0.02   0.02
        (0.05)   (0.05)
justicia_nota         -0.00 -0.01
          (0.07) (0.07)
AIC 3908.34 3794.20 3809.26 3815.31 3814.79 3820.83
BIC 3929.17 3830.41 3871.28 3882.50 3881.98 3893.19
Log Likelihood -1950.17 -1890.10 -1892.63 -1894.66 -1894.39 -1896.42
Num. obs. 1348 1304 1298 1298 1298 1298
Num. groups: id_estudiante 674 652 649 649 649 649
Var: id_estudiante (Intercept) 0.00 0.00 0.00 0.00 0.00 0.00
Var: Residual 1.05 1.05 1.05 1.05 1.05 1.06
***p < 0.001; **p < 0.01; *p < 0.05

Experimento

Error : Can't find datos_vi

Data Frame Summary

Dimensions: 2696 x 1
Duplicates: 2686
No Variable Stats / Values Freqs (% of Valid) Graph Valid Missing
1 decimas_asignadas [numeric]
Mean (sd) : 2.5 (1.5)
min ≤ med ≤ max:
0 ≤ 3 ≤ 10
IQR (CV) : 1 (0.6)
0 : 304 ( 11.3% )
1 : 361 ( 13.4% )
2 : 654 ( 24.3% )
3 : 864 ( 32.0% )
4 : 308 ( 11.4% )
5 : 169 ( 6.3% )
6 : 5 ( 0.2% )
7 : 12 ( 0.4% )
8 : 1 ( 0.0% )
10 : 18 ( 0.7% )
2696 (100.0%) 0 (0.0%)

Generated by summarytools 1.0.1 (R version 4.3.1)
2025-06-08

Correlaciones

  genero curso merit_esfuerzo merit_talento school_esfuerzo school_talento school_merecimiento decimas_asignadas justicia_nota nota
genero                    
curso -0.003                  
merit_esfuerzo 0.007 -0.208                
merit_talento -0.046 -0.133 0.501              
school_esfuerzo -0.042 -0.039 0.238 0.109            
school_talento -0.142 0.049 0.096 0.107 0.216          
school_merecimiento -0.092 -0.039 0.086 0.183 0.283 0.196        
decimas_asignadas 0.004 0.011 0.002 0.009 0.007 0.001 0.009      
justicia_nota 0.025 -0.049 0.097 0.124 0.131 0.037 0.103 0.004    
nota 0.053 -0.041 0.045 0.090 0.141 0.018 0.019 0.017 0.105  
Computed correlation used pearson-method with listwise-deletion.

Modelos simples

Statistical models
  Model 1 Model 2 Model 3 Model 4 Model 5
(Intercept) 2.46*** 2.45*** 2.47*** 2.45*** 2.42***
  (0.04) (0.04) (0.03) (0.10) (0.11)
generoMujer 0.01        
  (0.06)        
cursoMedia   0.03      
    (0.06)      
libros_hogarMás de 25 libros     -0.07    
      (0.08)    
merit_esfuerzo       0.00  
        (0.03)  
merit_talento         0.01
          (0.04)
AIC 9583.91 9906.03 9890.38 9907.35 9884.84
BIC 9607.37 9929.63 9913.97 9930.95 9908.43
Log Likelihood -4787.95 -4949.01 -4941.19 -4949.68 -4938.42
Num. obs. 2608 2696 2692 2696 2688
Num. groups: id_estudiante 652 674 673 674 672
Var: id_estudiante (Intercept) 0.00 0.00 0.00 0.00 0.00
Var: Residual 2.30 2.30 2.30 2.30 2.30
***p < 0.001; **p < 0.01; *p < 0.05
Statistical models
  Model 1 Model 2 Model 3 Model 4 Model 5
(Intercept) 2.44*** 2.42*** 2.38*** 2.16*** 2.46***
  (0.12) (0.14) (0.12) (0.29) (0.06)
school_esfuerzo 0.01        
  (0.04)        
school_talento   0.01      
    (0.04)      
school_merecimiento     0.03    
      (0.04)    
nota       0.05  
        (0.05)  
justicia_nota         0.00
          (0.07)
AIC 9892.57 9906.88 9877.37 9905.59 9891.41
BIC 9916.17 9930.47 9900.96 9929.19 9915.00
Log Likelihood -4942.29 -4949.44 -4934.69 -4948.80 -4941.71
Num. obs. 2692 2696 2688 2696 2692
Num. groups: id_estudiante 673 674 672 674 673
Var: id_estudiante (Intercept) 0.00 0.00 0.00 0.00 0.00
Var: Residual 2.30 2.30 2.30 2.29 2.30
***p < 0.001; **p < 0.01; *p < 0.05

ICC

results_0 = lmer(decimas_asignadas ~ 1 + (1 | id_estudiante), data = datos_viñetas)
boundary (singular) fit: see help('isSingular')
summary(results_0)
Linear mixed model fit by REML ['lmerMod']
Formula: decimas_asignadas ~ 1 + (1 | id_estudiante)
   Data: datos_viñetas

REML criterion at convergence: 9894.5

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-1.6259 -0.3056  0.3546  0.3546  4.9755 

Random effects:
 Groups        Name        Variance Std.Dev.
 id_estudiante (Intercept) 0.000    0.000   
 Residual                  2.295    1.515   
Number of obs: 2696, groups:  id_estudiante, 674

Fixed effects:
            Estimate Std. Error t value
(Intercept)  2.46291    0.02917   84.42
optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see help('isSingular')
reghelper::ICC(results_0)
[1] 0

Modelos multinivel


Se esfuerza menos que la mayoría   Se esfuerza más que la mayoría 
                            1348                             1348 
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
Statistical models
  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
(Intercept) 1.29*** 1.27*** 1.15*** 0.91** 1.15*** 0.91**
  (0.04) (0.05) (0.18) (0.29) (0.18) (0.29)
esfuerzoSe esfuerza más que la mayoría 1.63*** 1.66*** 1.66*** 1.66*** 1.66*** 1.66***
  (0.05) (0.05) (0.05) (0.05) (0.05) (0.05)
contexto_hogarSu casa es pequeña, no tiene un espacio cómodo para estudiar 0.71*** 0.71*** 0.71*** 0.71*** 0.71*** 0.71***
  (0.05) (0.05) (0.05) (0.05) (0.05) (0.05)
generoMujer   0.01 0.02 0.02 0.02 0.02
    (0.05) (0.05) (0.05) (0.05) (0.05)
cursoMedia   0.04 0.04 0.04 0.04 0.04
    (0.05) (0.05) (0.05) (0.05) (0.05)
libros_hogarMás de 25 libros   -0.06 -0.06 -0.07 -0.06 -0.07
    (0.07) (0.07) (0.07) (0.07) (0.07)
merit_esfuerzo     -0.01 -0.00 -0.01 -0.00
      (0.03) (0.03) (0.03) (0.03)
merit_talento     0.02 0.02 0.02 0.02
      (0.04) (0.04) (0.04) (0.04)
school_esfuerzo     0.01 0.01 0.01 0.01
      (0.03) (0.03) (0.03) (0.03)
school_talento     -0.00 -0.00 -0.00 -0.00
      (0.04) (0.04) (0.04) (0.04)
school_merecimiento     0.01 0.02 0.01 0.02
      (0.03) (0.03) (0.03) (0.03)
nota       0.04   0.04
        (0.04)   (0.04)
justicia_nota         0.01 0.00
          (0.06) (0.06)
AIC 8774.15 8462.77 8465.46 8470.87 8471.33 8476.74
BIC 8803.64 8509.70 8541.67 8552.93 8553.39 8564.67
Log Likelihood -4382.07 -4223.38 -4219.73 -4221.43 -4221.66 -4223.37
Num. obs. 2696 2608 2596 2596 2596 2596
Num. groups: id_estudiante 674 652 649 649 649 649
Var: id_estudiante (Intercept) 0.00 0.00 0.00 0.00 0.00 0.00
Var: Residual 1.50 1.48 1.49 1.49 1.49 1.49
***p < 0.001; **p < 0.01; *p < 0.05
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
Statistical models
  Model 1 Model 2 Model 3
(Intercept) 0.13*** 0.13*** 0.13***
  (0.00) (0.01) (0.02)
esfuerzoSe esfuerza más que la mayoría 0.17*** 0.17*** 0.17***
  (0.00) (0.00) (0.00)
contexto_hogarSu casa es pequeña, no tiene un espacio cómodo para estudiar 0.07*** 0.07*** 0.07***
  (0.00) (0.00) (0.00)
generoMujer   -0.00 0.00
    (0.00) (0.00)
cursoMedia   0.00 0.00
    (0.00) (0.00)
libros_hogarMás de 25 libros   -0.00 -0.00
    (0.01) (0.01)
merit_esfuerzo     -0.00
      (0.00)
merit_talento     0.00
      (0.00)
school_esfuerzo     0.00
      (0.00)
school_talento     0.00
      (0.00)
school_merecimiento     -0.00
      (0.00)
AIC -3722.37 -3596.63 -3514.39
BIC -3692.95 -3549.80 -3438.35
Log Likelihood 1866.19 1806.31 1770.19
Num. obs. 2656 2576 2564
Num. groups: id_estudiante 664 644 641
Var: id_estudiante (Intercept) 0.00 0.00 0.00
Var: Residual 0.01 0.01 0.01
***p < 0.001; **p < 0.01; *p < 0.05

Pendiente aleatoria

boundary (singular) fit: see help('isSingular')

boundary (singular) fit: see help('isSingular')

boundary (singular) fit: see help('isSingular')

boundary (singular) fit: see help('isSingular')

boundary (singular) fit: see help('isSingular')

boundary (singular) fit: see help('isSingular')

Modelos con todas las fases del experimento

Statistical models
  Exp 1 Exp 2 Exp 3 Exp 4
Intercepto 2.11*** 3.04*** 1.06** 0.91**
  (0.30) (0.32) (0.34) (0.29)
Viñeta exp 1 -0.59***      
  (0.05)      
Mujer -0.03 0.02 0.04 0.02
  (0.05) (0.05) (0.06) (0.05)
Media 0.02 -0.00 0.01 0.04
  (0.05) (0.05) (0.06) (0.05)
Más de 25 libros -0.02 0.00 -0.01 -0.07
  (0.07) (0.08) (0.08) (0.07)
Esfuerzo social -0.05 -0.02 0.01 -0.00
  (0.04) (0.04) (0.04) (0.03)
Talento social 0.05 -0.01 -0.04 0.02
  (0.04) (0.04) (0.04) (0.04)
Esfuerzo escuela 0.04 0.01 -0.00 0.01
  (0.04) (0.04) (0.04) (0.03)
Talento escuela 0.04 0.04 0.04 -0.00
  (0.04) (0.04) (0.04) (0.04)
Merecimiento escuela -0.02 0.01 -0.00 0.02
  (0.04) (0.04) (0.04) (0.03)
Rendimiento 0.06 0.05 0.02 0.04
  (0.04) (0.05) (0.05) (0.04)
Justicia -0.01 -0.00 -0.01 0.00
  (0.06) (0.06) (0.07) (0.06)
Viñeta exp 2   -1.98***    
    (0.05)    
Se esfuerza más     2.45*** 1.66***
      (0.06) (0.05)
Casa pequeña       0.71***
        (0.05)
AIC 3538.01 3635.72 3820.83 8476.74
BIC 3610.37 3708.08 3893.19 8564.67
Log Likelihood -1755.00 -1803.86 -1896.42 -4223.37
Num. obs. 1298 1298 1298 2596
Num. groups: id_estudiante 649 649 649 649
Var: id_estudiante (Intercept) 0.00 0.00 0.00 0.00
Var: Residual 0.85 0.91 1.06 1.49
***p < 0.001; **p < 0.01; *p < 0.05