Medición de percepciones y preferencias sobre meritocracia en etapa escolar en Chile

Análisis de datos

Autor/a

Andreas Laffert, Asistente de Investigación

Fecha de publicación

22 de noviembre de 2024

1 Librerías

2 Datos

load(file = here("output", "data", "db_long_proc.RData"))


names(db_long)
glimpse(db_long)

3 Analísis

3.1 Descriptivos

t1 <- db_long %>% 
  filter(ola == 1) %>% 
  select(-c(1:3)) %>% 
  skim() %>% 
  yank("numeric") %>% 
  as_tibble() %>% 
  mutate(range = paste0("(",p0,"-",p100,")")) %>% 
  mutate_if(.predicate = is.numeric, .funs = ~ round(.,2)) %>% 
  select("Variable" = skim_variable,"Mean"= mean, "SD"=sd, "Range" = range, "Histogram"=hist) 

t1 %>% 
  kableExtra::kable(format = "markdown")
Tabla 1: Estadísticos descriptivos
Variable Mean SD Range Histogram
perc_effort 2.76 0.77 (1-4) ▁▅▁▇▂
perc_talent 2.84 0.76 (1-4) ▁▃▁▇▂
perc_rich_parents 3.02 0.95 (1-4) ▂▅▁▇▇
perc_contact 3.06 0.85 (1-4) ▁▃▁▇▆
pref_effort 3.38 0.79 (1-4) ▁▁▁▅▇
pref_talent 2.63 0.84 (1-4) ▂▇▁▇▃
pref_rich_parents 2.54 0.78 (1-4) ▂▆▁▇▂
pref_contact 2.66 0.81 (1-4) ▂▅▁▇▂
just_educ 2.28 0.89 (1-4) ▅▇▁▆▂
just_health 2.00 0.94 (1-4) ▇▇▁▅▂
just_pension 2.05 0.87 (1-4) ▆▇▁▅▁
mjp 2.11 0.75 (1-4) ▆▇▆▃▁
theme_set(theme_ggdist())
colors <- RColorBrewer::brewer.pal(n = 4, name = "RdBu")

a <- db_long %>% 
  filter(ola == 1) %>%
  select(starts_with("perc")) %>% 
  sjPlot::plot_likert(geom.colors = colors,
                      title = c("a. Percepciones"),
                      geom.size = 0.8,
                      axis.labels = c("Esfuerzo", "Talento", "Padres ricos", "Contactos"),
                      catcount = 4,
                      values  =  "sum.outside",
                      reverse.colors = F,
                      reverse.scale = T,
                      show.n = FALSE,
                      show.prc.sign = T
                      ) +
  ggplot2::theme(legend.position = "none")

b <- db_long %>% 
  filter(ola == 1) %>% 
  select(starts_with("pref")) %>% 
  sjPlot::plot_likert(geom.colors = colors,
                      title = c("b. Preferencias"),
                      geom.size = 0.8,
                     axis.labels = c("Esfuerzo", "Talento", "Padres ricos", "Contactos"),
                      catcount = 4,
                      values  =  "sum.outside",
                      reverse.colors = F,
                      reverse.scale = T,
                      show.n = FALSE,
                      show.prc.sign = T
  ) +
  ggplot2::theme(legend.position = "bottom")

likerplot <- a / b + plot_annotation(caption = paste0("Fuente: Elaboración propia en base a Encuesta Panel EDUMER Ola 1"," (n = ",dim(db_long[db_long$ola==1,])[1],")"
))

likerplot
Figura 1

3.2 Bivariados

M <- psych::polychoric(db_long[db_long$ola==1,][c(4:11,15)])

P <- cor(db_long[db_long$ola==1,][c(4:11,15)], method = "pearson")

diag(M$rho) <- NA

diag(P) <- NA

M$rho[9,] <- P[9,]

rownames(M$rho) <- c("A. Percepción Esfuerzo",
                     "B. Percepción Talento",
                     "C. Percepción Padres Ricos",
                     "D. Percepción Contactos",
                     "E. Preferencias Esfuerzo",
                     "F. Preferencias Talento",
                     "G. Preferencias Padres Ricos",
                     "H. Preferencias Contactos",
                     "I. Market Justice Preferences")

#set Column names of the matrix
colnames(M$rho) <-c("(A)", "(B)","(C)","(D)","(E)","(F)","(G)",
                       "(H)","(I)")

rownames(P) <- c("A. Percepción Esfuerzo",
                     "B. Percepción Talento",
                     "C. Percepción Padres Ricos",
                     "D. Percepción Contactos",
                     "E. Preferencias Esfuerzo",
                     "F. Preferencias Talento",
                     "G. Preferencias Padres Ricos",
                     "H. Preferencias Contactos",
                     "I. Market Justice Preferences")

#set Column names of the matrix
colnames(P) <-c("(A)", "(B)","(C)","(D)","(E)","(F)","(G)",
                    "(H)","(I)")

testp <- cor.mtest(M$rho, conf.level = 0.95)

#Plot the matrix using corrplot
corrplot::corrplot(M$rho,
                   method = "color",
                   addCoef.col = "black",
                   type = "upper",
                   tl.col = "black",
                   col = colorRampPalette(c("#E16462", "white", "#0D0887"))(12),
                   bg = "white",
                   na.label = "-") 
Figura 2

3.3 Multivariados

3.3.1 CFA

# model
model_cfa <- '
  perc_merit = ~ perc_effort + perc_talent
  perc_nmerit = ~ perc_rich_parents + perc_contact
  pref_merit = ~ pref_effort + pref_talent
  pref_nmerit = ~ pref_rich_parents + pref_contact
  '

# estimation for each order set

m1_cfa <- cfa(model = model_cfa, 
              data = subset(db_long, ola == 1),
              estimator = "DWLS",
              ordered = T,
              std.lv = F) 

m2_cfa <- cfa(model = model_cfa, 
              data = subset(db_long, ola == 2), 
              estimator = "DWLS",
              ordered = T,
              std.lv = F)

summary(m1_cfa, fit.measures = T, standardized = T); summary(m2_cfa, fit.measures = T, standardized = T) 
lavaan 0.6.15 ended normally after 43 iterations

  Estimator                                       DWLS
  Optimization method                           NLMINB
  Number of model parameters                        38

  Number of observations                           839

Model Test User Model:
                                                      
  Test statistic                                39.183
  Degrees of freedom                                14
  P-value (Chi-square)                           0.000

Model Test Baseline Model:

  Test statistic                              2412.306
  Degrees of freedom                                28
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.989
  Tucker-Lewis Index (TLI)                       0.979

Root Mean Square Error of Approximation:

  RMSEA                                          0.046
  90 Percent confidence interval - lower         0.030
  90 Percent confidence interval - upper         0.064
  P-value H_0: RMSEA <= 0.050                    0.608
  P-value H_0: RMSEA >= 0.080                    0.001

Standardized Root Mean Square Residual:

  SRMR                                           0.038

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Expected
  Information saturated (h1) model        Unstructured

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  perc_merit =~                                                         
    perc_effort       1.000                               0.843    0.843
    perc_talent       0.734    0.225    3.258    0.001    0.619    0.619
  perc_nmerit =~                                                        
    perc_rch_prnts    1.000                               0.645    0.645
    perc_contact      1.465    0.200    7.318    0.000    0.944    0.944
  pref_merit =~                                                         
    pref_effort       1.000                               0.609    0.609
    pref_talent       0.967    0.153    6.305    0.000    0.589    0.589
  pref_nmerit =~                                                        
    pref_rch_prnts    1.000                               0.747    0.747
    pref_contact      1.101    0.183    6.013    0.000    0.822    0.822

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  perc_merit ~~                                                         
    perc_nmerit      -0.071    0.019   -3.767    0.000   -0.131   -0.131
    pref_merit        0.034    0.022    1.509    0.131    0.065    0.065
    pref_nmerit       0.100    0.024    4.099    0.000    0.158    0.158
  perc_nmerit ~~                                                        
    pref_merit        0.179    0.027    6.559    0.000    0.455    0.455
    pref_nmerit       0.132    0.022    5.952    0.000    0.273    0.273
  pref_merit ~~                                                         
    pref_nmerit       0.083    0.021    3.912    0.000    0.183    0.183

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .perc_effort       0.000                               0.000    0.000
   .perc_talent       0.000                               0.000    0.000
   .perc_rch_prnts    0.000                               0.000    0.000
   .perc_contact      0.000                               0.000    0.000
   .pref_effort       0.000                               0.000    0.000
   .pref_talent       0.000                               0.000    0.000
   .pref_rch_prnts    0.000                               0.000    0.000
   .pref_contact      0.000                               0.000    0.000
    perc_merit        0.000                               0.000    0.000
    perc_nmerit       0.000                               0.000    0.000
    pref_merit        0.000                               0.000    0.000
    pref_nmerit       0.000                               0.000    0.000

Thresholds:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    perc_effort|t1   -1.558    0.069  -22.577    0.000   -1.558   -1.558
    perc_effort|t2   -0.443    0.045   -9.867    0.000   -0.443   -0.443
    perc_effort|t3    1.051    0.053   19.752    0.000    1.051    1.051
    perc_talent|t1   -1.568    0.069  -22.580    0.000   -1.568   -1.568
    perc_talent|t2   -0.626    0.047  -13.448    0.000   -0.626   -0.626
    perc_talent|t3    0.976    0.052   18.884    0.000    0.976    0.976
    prc_rch_prnt|1   -1.406    0.063  -22.292    0.000   -1.406   -1.406
    prc_rch_prnt|2   -0.568    0.046  -12.375    0.000   -0.568   -0.568
    prc_rch_prnt|3    0.299    0.044    6.787    0.000    0.299    0.299
    perc_contct|t1   -1.622    0.072  -22.559    0.000   -1.622   -1.622
    perc_contct|t2   -0.747    0.048  -15.561    0.000   -0.747   -0.747
    perc_contct|t3    0.410    0.045    9.185    0.000    0.410    0.410
    pref_effort|t1   -1.773    0.080  -22.210    0.000   -1.773   -1.773
    pref_effort|t2   -1.173    0.056  -20.922    0.000   -1.173   -1.173
    pref_effort|t3   -0.103    0.043   -2.380    0.017   -0.103   -0.103
    pref_talent|t1   -1.431    0.064  -22.370    0.000   -1.431   -1.431
    pref_talent|t2   -0.115    0.043   -2.656    0.008   -0.115   -0.115
    pref_talent|t3    0.981    0.052   18.944    0.000    0.981    0.981
    prf_rch_prnt|1   -1.309    0.060  -21.858    0.000   -1.309   -1.309
    prf_rch_prnt|2   -0.118    0.043   -2.725    0.006   -0.118   -0.118
    prf_rch_prnt|3    1.359    0.061   22.110    0.000    1.359    1.359
    pref_contct|t1   -1.382    0.062  -22.205    0.000   -1.382   -1.382
    pref_contct|t2   -0.280    0.044   -6.375    0.000   -0.280   -0.280
    pref_contct|t3    1.110    0.055   20.356    0.000    1.110    1.110

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .perc_effort       0.290                               0.290    0.290
   .perc_talent       0.617                               0.617    0.617
   .perc_rch_prnts    0.584                               0.584    0.584
   .perc_contact      0.108                               0.108    0.108
   .pref_effort       0.629                               0.629    0.629
   .pref_talent       0.654                               0.654    0.654
   .pref_rch_prnts    0.442                               0.442    0.442
   .pref_contact      0.324                               0.324    0.324
    perc_merit        0.710    0.221    3.219    0.001    1.000    1.000
    perc_nmerit       0.416    0.059    7.026    0.000    1.000    1.000
    pref_merit        0.371    0.068    5.425    0.000    1.000    1.000
    pref_nmerit       0.558    0.095    5.895    0.000    1.000    1.000

Scales y*:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    perc_effort       1.000                               1.000    1.000
    perc_talent       1.000                               1.000    1.000
    perc_rch_prnts    1.000                               1.000    1.000
    perc_contact      1.000                               1.000    1.000
    pref_effort       1.000                               1.000    1.000
    pref_talent       1.000                               1.000    1.000
    pref_rch_prnts    1.000                               1.000    1.000
    pref_contact      1.000                               1.000    1.000
lavaan 0.6.15 ended normally after 41 iterations

  Estimator                                       DWLS
  Optimization method                           NLMINB
  Number of model parameters                        38

  Number of observations                           659

Model Test User Model:
                                                      
  Test statistic                                50.445
  Degrees of freedom                                14
  P-value (Chi-square)                           0.000

Model Test Baseline Model:

  Test statistic                              2160.796
  Degrees of freedom                                28
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.983
  Tucker-Lewis Index (TLI)                       0.966

Root Mean Square Error of Approximation:

  RMSEA                                          0.063
  90 Percent confidence interval - lower         0.045
  90 Percent confidence interval - upper         0.082
  P-value H_0: RMSEA <= 0.050                    0.116
  P-value H_0: RMSEA >= 0.080                    0.072

Standardized Root Mean Square Residual:

  SRMR                                           0.050

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Expected
  Information saturated (h1) model        Unstructured

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  perc_merit =~                                                         
    perc_effort       1.000                               0.873    0.873
    perc_talent       0.755    0.143    5.297    0.000    0.659    0.659
  perc_nmerit =~                                                        
    perc_rch_prnts    1.000                               0.821    0.821
    perc_contact      0.992    0.143    6.920    0.000    0.815    0.815
  pref_merit =~                                                         
    pref_effort       1.000                               0.671    0.671
    pref_talent       0.622    0.123    5.039    0.000    0.418    0.418
  pref_nmerit =~                                                        
    pref_rch_prnts    1.000                               0.720    0.720
    pref_contact      1.132    0.424    2.672    0.008    0.815    0.815

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  perc_merit ~~                                                         
    perc_nmerit      -0.213    0.030   -7.015    0.000   -0.298   -0.298
    pref_merit        0.154    0.031    5.023    0.000    0.262    0.262
    pref_nmerit       0.073    0.026    2.798    0.005    0.117    0.117
  perc_nmerit ~~                                                        
    pref_merit        0.257    0.036    7.153    0.000    0.466    0.466
    pref_nmerit       0.081    0.027    2.958    0.003    0.136    0.136
  pref_merit ~~                                                         
    pref_nmerit       0.015    0.025    0.617    0.538    0.032    0.032

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .perc_effort       0.000                               0.000    0.000
   .perc_talent       0.000                               0.000    0.000
   .perc_rch_prnts    0.000                               0.000    0.000
   .perc_contact      0.000                               0.000    0.000
   .pref_effort       0.000                               0.000    0.000
   .pref_talent       0.000                               0.000    0.000
   .pref_rch_prnts    0.000                               0.000    0.000
   .pref_contact      0.000                               0.000    0.000
    perc_merit        0.000                               0.000    0.000
    perc_nmerit       0.000                               0.000    0.000
    pref_merit        0.000                               0.000    0.000
    pref_nmerit       0.000                               0.000    0.000

Thresholds:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    perc_effort|t1   -1.334    0.068  -19.488    0.000   -1.334   -1.334
    perc_effort|t2   -0.299    0.050   -6.024    0.000   -0.299   -0.299
    perc_effort|t3    1.016    0.059   17.156    0.000    1.016    1.016
    perc_talent|t1   -1.602    0.080  -20.002    0.000   -1.602   -1.602
    perc_talent|t2   -0.523    0.051  -10.183    0.000   -0.523   -0.523
    perc_talent|t3    0.931    0.057   16.218    0.000    0.931    0.931
    prc_rch_prnt|1   -1.392    0.071  -19.710    0.000   -1.392   -1.392
    prc_rch_prnt|2   -0.519    0.051  -10.107    0.000   -0.519   -0.519
    prc_rch_prnt|3    0.260    0.049    5.249    0.000    0.260    0.260
    perc_contct|t1   -1.740    0.088  -19.780    0.000   -1.740   -1.740
    perc_contct|t2   -0.727    0.054  -13.496    0.000   -0.727   -0.727
    perc_contct|t3    0.256    0.049    5.172    0.000    0.256    0.256
    pref_effort|t1   -1.757    0.089  -19.730    0.000   -1.757   -1.757
    pref_effort|t2   -1.191    0.064  -18.668    0.000   -1.191   -1.191
    pref_effort|t3   -0.105    0.049   -2.141    0.032   -0.105   -0.105
    pref_talent|t1   -1.630    0.082  -19.983    0.000   -1.630   -1.630
    pref_talent|t2    0.010    0.049    0.195    0.846    0.010    0.010
    pref_talent|t3    1.131    0.062   18.214    0.000    1.131    1.131
    prf_rch_prnt|1   -1.230    0.065  -18.933    0.000   -1.230   -1.230
    prf_rch_prnt|2   -0.070    0.049   -1.440    0.150   -0.070   -0.070
    prf_rch_prnt|3    1.255    0.066   19.083    0.000    1.255    1.255
    pref_contct|t1   -1.382    0.070  -19.676    0.000   -1.382   -1.382
    pref_contct|t2   -0.232    0.049   -4.706    0.000   -0.232   -0.232
    pref_contct|t3    1.096    0.061   17.915    0.000    1.096    1.096

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .perc_effort       0.238                               0.238    0.238
   .perc_talent       0.565                               0.565    0.565
   .perc_rch_prnts    0.326                               0.326    0.326
   .perc_contact      0.336                               0.336    0.336
   .pref_effort       0.549                               0.549    0.549
   .pref_talent       0.826                               0.826    0.826
   .pref_rch_prnts    0.482                               0.482    0.482
   .pref_contact      0.336                               0.336    0.336
    perc_merit        0.762    0.148    5.160    0.000    1.000    1.000
    perc_nmerit       0.674    0.100    6.712    0.000    1.000    1.000
    pref_merit        0.451    0.109    4.119    0.000    1.000    1.000
    pref_nmerit       0.518    0.195    2.655    0.008    1.000    1.000

Scales y*:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    perc_effort       1.000                               1.000    1.000
    perc_talent       1.000                               1.000    1.000
    perc_rch_prnts    1.000                               1.000    1.000
    perc_contact      1.000                               1.000    1.000
    pref_effort       1.000                               1.000    1.000
    pref_talent       1.000                               1.000    1.000
    pref_rch_prnts    1.000                               1.000    1.000
    pref_contact      1.000                               1.000    1.000
left_join(
standardizedsolution(m1_cfa) %>% 
  filter(op=="=~") %>%
  select(lhs,rhs,loadings_w01=est.std,pvalue_w01=pvalue),
standardizedsolution(m2_cfa) %>% 
  filter(op=="=~") %>%
  select(lhs,rhs,loadings_w02=est.std,pvalue_w02=pvalue)
) %>% 
  mutate(
    across(
      .cols = c(pvalue_w01, pvalue_w02),
      .fns = ~ case_when(
        . < 0.05 & . > 0.01 ~ "*",
        . <= 0.01 ~ "**",
        TRUE ~ "")
    ),
    loadings_w01 = paste(round(loadings_w01, 3), pvalue_w01, sep = " "),
    loadings_w02 = paste(round(loadings_w02, 3), pvalue_w02, sep = " "),
    lhs = case_when(
      lhs == "perc_merit" ~ "Percepción meritocrática",
      lhs == "perc_nmerit" ~ "Percepción no meritocrática",
      lhs == "pref_merit" ~ "Preferencia meritocrática",
      lhs == "pref_nmerit" ~ "Preferencia no meritocrática"),
    rhs = case_when(
      rhs == "perc_effort" ~ "Percepción esfuerzo",
      rhs == "perc_talent" ~ "Percepción talento",
      rhs == "perc_rich_parents" ~ "Percepción padres ricos",
      rhs == "perc_contact" ~ "Percepción contactos",
      rhs == "pref_effort" ~ "Preferencia esfuerzo",
      rhs == "pref_talent" ~ "Preferencia talento",
      rhs == "pref_rich_parents" ~ "Preferencia padres ricos",
      rhs == "pref_contact" ~ "Preferencia contactos"),
    simbol = "=~"
  ) %>% 
  select(lhs, simbol, rhs, loadings_w01, loadings_w02) %>% 
  kableExtra::kable(format = "markdown",
                    booktabs= T, 
                    escape = F, 
                    align = 'c',
                    col.names = c("Factor", "", "Indicador", "Cargas Ola 1", "Cargas Ola 2"),
                    caption = "Cargas factoriales en ambas Olas") %>% 
  kableExtra::add_footnote(label = "** p<0.01, * p<0.5", notation = "none")
Tabla 2: Cargas factoriales en ambas Olas
Factor Indicador Cargas Ola 1 Cargas Ola 2
Percepción meritocrática =~ Percepción esfuerzo 0.843 ** 0.873 **
Percepción meritocrática =~ Percepción talento 0.619 ** 0.659 **
Percepción no meritocrática =~ Percepción padres ricos 0.645 ** 0.821 **
Percepción no meritocrática =~ Percepción contactos 0.944 ** 0.815 **
Preferencia meritocrática =~ Preferencia esfuerzo 0.609 ** 0.671 **
Preferencia meritocrática =~ Preferencia talento 0.589 ** 0.418 **
Preferencia no meritocrática =~ Preferencia padres ricos 0.747 ** 0.72 **
Preferencia no meritocrática =~ Preferencia contactos 0.822 ** 0.815 **

Note: ^^ ** p<0.01, * p<0.5

3.3.2 SEM

## Especificar el modelo: medición y estructural
m_sem1 <- '
# Modelo medición
perc_merit = ~ perc_effort + perc_talent
perc_nmerit = ~ perc_rich_parents + perc_contact
pref_merit = ~ pref_effort + pref_talent
pref_nmerit = ~ pref_rich_parents + pref_contact

  # Modelo estructural
mjp ~  perc_merit + perc_nmerit + pref_merit + pref_nmerit
'

## Ajustar modelo
f_sem1 <- sem(m_sem1, data = subset(db_long, ola == 1))

## Ver resultados completos
summary(f_sem1, fit.measures = T, standardized = T)
lavaan 0.6.15 ended normally after 57 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        27

  Number of observations                           839

Model Test User Model:
                                                      
  Test statistic                                74.990
  Degrees of freedom                                18
  P-value (Chi-square)                           0.000

Model Test Baseline Model:

  Test statistic                              1112.323
  Degrees of freedom                                36
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.947
  Tucker-Lewis Index (TLI)                       0.894

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -8610.421
  Loglikelihood unrestricted model (H1)      -8572.926
                                                      
  Akaike (AIC)                               17274.842
  Bayesian (BIC)                             17402.612
  Sample-size adjusted Bayesian (SABIC)      17316.868

Root Mean Square Error of Approximation:

  RMSEA                                          0.061
  90 Percent confidence interval - lower         0.047
  90 Percent confidence interval - upper         0.076
  P-value H_0: RMSEA <= 0.050                    0.088
  P-value H_0: RMSEA >= 0.080                    0.018

Standardized Root Mean Square Residual:

  SRMR                                           0.037

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Expected
  Information saturated (h1) model          Structured

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  perc_merit =~                                                         
    perc_effort       1.000                               0.610    0.791
    perc_talent       0.696    0.187    3.719    0.000    0.425    0.558
  perc_nmerit =~                                                        
    perc_rch_prnts    1.000                               0.540    0.567
    perc_contact      1.449    0.204    7.095    0.000    0.782    0.920
  pref_merit =~                                                         
    pref_effort       1.000                               0.335    0.423
    pref_talent       1.652    0.346    4.778    0.000    0.554    0.657
  pref_nmerit =~                                                        
    pref_rch_prnts    1.000                               0.559    0.714
    pref_contact      1.096    0.105   10.448    0.000    0.613    0.756

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  mjp ~                                                                 
    perc_merit        0.120    0.057    2.104    0.035    0.073    0.098
    perc_nmerit      -0.235    0.065   -3.645    0.000   -0.127   -0.170
    pref_merit        0.380    0.129    2.946    0.003    0.127    0.170
    pref_nmerit       0.513    0.064    8.002    0.000    0.287    0.384

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  perc_merit ~~                                                         
    perc_nmerit      -0.028    0.015   -1.824    0.068   -0.086   -0.086
    pref_merit        0.003    0.012    0.216    0.829    0.013    0.013
    pref_nmerit       0.053    0.018    2.985    0.003    0.154    0.154
  perc_nmerit ~~                                                        
    pref_merit        0.071    0.018    3.983    0.000    0.390    0.390
    pref_nmerit       0.085    0.018    4.685    0.000    0.283    0.283
  pref_merit ~~                                                         
    pref_nmerit       0.033    0.012    2.686    0.007    0.178    0.178

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .perc_effort       0.223    0.100    2.245    0.025    0.223    0.375
   .perc_talent       0.399    0.052    7.713    0.000    0.399    0.689
   .perc_rch_prnts    0.615    0.049   12.578    0.000    0.615    0.679
   .perc_contact      0.111    0.081    1.360    0.174    0.111    0.153
   .pref_effort       0.517    0.035   14.968    0.000    0.517    0.821
   .pref_talent       0.405    0.067    6.012    0.000    0.405    0.569
   .pref_rch_prnts    0.301    0.032    9.528    0.000    0.301    0.490
   .pref_contact      0.282    0.036    7.783    0.000    0.282    0.429
   .mjp               0.450    0.025   18.026    0.000    0.450    0.807
    perc_merit        0.372    0.103    3.632    0.000    1.000    1.000
    perc_nmerit       0.291    0.050    5.769    0.000    1.000    1.000
    pref_merit        0.112    0.029    3.827    0.000    1.000    1.000
    pref_nmerit       0.313    0.038    8.179    0.000    1.000    1.000

3.3.3 Invarianza

Tabla 3: Resultados de invarianza de medida de grupos múltiples para PPMS
Model χ^2 (df) CFI RMSEA (90 CI) Δ χ^2 (Δ df) Δ CFI Δ RMSEA Decision
Configural 38.41 (20) 0.990 0.04 (0.02-0.059)
Weak 50.98 (27) 0.987 0.039 (0.022-0.055) 12.569 (7) . -0.003 -0.001 Accept
Strong 142.21 (34) 0.942 0.074 (0.062-0.087) 91.228 (7) *** -0.045 0.035 Reject
Strict 245.08 (48) 0.894 0.084 (0.074-0.094) 102.874 (14) *** -0.048 0.010 Reject

N = 583